
1 INTRODUCTION 

Development of numerical calculations and      
increasing power of microcomputers allow the          
determination of the behaviour of large soil     
constructions such as levees, embankments, road 
earthworks. All these earth structures are compacted 
at Proctor optimum with a degree of saturation   
between 80 to 98% with an unsaturated soil. For a  
precise  estimation of the final state of density of 
the soil, it is necessary to model the compaction of 
the soil along a wetting path. Furthermore, when the    
construction of the earth structure is completed, it 
sustains drying and wetting events associated to 
rainy and sunny conditions. These events therefore 
require the development of a model able to simulate 
drying and wetting paths 

There are several ways for modelling retention 
curves. The first method is to use experimental   
relationships. This approach (1) has many successes 
with the Brooks and Corey’s model (1966) which 
needs the determination of air entry suction sair and 
the experimental parameter . Later Van Genuchen 
(1980) used a new experimental relationship (2) able 
to simulate larger retention curves with 3       
experimental parameters (, n, m). Gallipoli et al. 
(2003) followed the same research scheme and  
proposed a complete experimental relation (3) with 4 
experimental parameters (n).  

The second method is to consider physical    
modelling. With this approach, there is no need to 
assume particular shapes of the retention curves, 

which is a consequence of the physical assumptions. 
One   option is to consider the soil as a porous  
medium (Or and Tuller, 1999). The second option is 
to consider the soil as a structure made of spherical 
particles, as used in this paper. The present study    
focuses on a theoretical model based on elastic 
spherical particle arrangement. This approach    
follows a new research way so that the physical   
phenomenon can be     explained whilst the  
number of experimental parameters is limited.  
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2 THE EXPRESSION OF THE THEORETICAL 
RETENTION CURVE FOR UNSATURATED 
SOIL 

2.1 Hypothesis 

Many authors have mentioned the existence of four 
areas of saturation, each with a distinct behavior. 
This assumption is resumed in the design of our 
model, mostly based on the work of Boutonnier 
(2007).  

- Domain D1 : s ≥ sair and Sr ≤ Srair 
The gaseous phase is continuous in the soil. This 

state gives a suction s higher than the air entry   
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ABSTRACT: Different approaches have been used for modeling retention curves. The experimental   
correlation was first proposed by Brooks and Corey (1966), Van Genuchen (1980) or Gallipoli et al. (2003). 
The physical modeling of non-saturated soils is used for this study. The shape of the retention curve is a con-
sequence of the physical assumptions. The paper presents a theoretical model based on elastic spherical parti-
cle arrangement. Firsly, a uniform model is presented with a single diameter of soil particle. The second step 
extends the use of the model to graded soils. The model uses only physical parameters easy to measure. The 
model is compared with the experimental retention curve of three different samples of graded soils, glass 
sample (4m-140m), the Livet-Gavet loam (1.6m-3mm) and the Jossigny Loam (0,1m-0,1mm). It shows 
its ability to model the experimental curves. It is of great interest for engineers as it gives a retention curve 
without direct measurements of suction 



suction and a lower degree of saturation than the  
degree of saturation of air entry. 

- Domain D2 : s ≤ sair and Srair ≤ Sr ≤ Sre and uw≤0 
In this domain, free air disappears. The air is  

occluded in the soil. The air is in contact with the 
soil particles. The suction has the effect of increasing 
the strength of interparticle  contacts. The water 
pore pressure is negative  

- Domain D3 :  Sre < Sr < 1 and uw >0 
Air is occluded into the soil sample and is   

considered to be independent from the skeleton.    
Capillary strength has no effect on the contact forces   
between soil particles. We consider here D3 is corre-
sponding with the case of positive pore        
pressures with a degree of saturation lower than 1. 

- Domain D4 :  Sr = 1  
There is no air in gaseous state in the soil. The soil is 
saturated. The boundary between D3 and D4 can  
also be expressed through the pore pressure with a  
degree of saturation equal to 1. 

2.2 Deformation of the spherical particles and 
volume of meniscus: Domain D1 

To complete the original model of non-saturation 
(Monnet and Boutonnier, 2012) written for domain 
D2 to D4, it was decided to model the D1 domain. 

Under the action of the water at the interparticle 
contact, there is suction on the cross section of the 
meniscus (Fig.1) and surface tension (Taibi, 1994). 
The model of soil is composed of uniform spherical 
particles of radius R. According to Laplace's law, 
suction is the product of the surface tension Tc by the 
sum of two principal curvatures of radius r of the 
meniscus and the radius b of the torus corresponding 
to the wetted area (4). Under the action of a normal 
force FN (5) on the contact plane, the two balls   
deforms elastically. The detail of these calculations 
is presented in Monnet et al. (2017).  

 brTs c 11.   (4) 

cN Tbbsf ...2.. 2    (5) 

2.3 Analytical calculation of meniscus volumes with 
a wetting angle : Domain D1 

The contact between the particles and the water has a 
wetting angle of c which varies in case of drainage 
or humidification (Gras, 2011).  

The calculation of the volume of the meniscus is 
made with a rotational assumption around the   
horizontal axis through the centre of the two    
particles (Fig. 2) and a relative horizontal symmetry 
with the EC plane contacting the particles. The  
volume of the meniscus is the difference between the 
volume of CDAE frustum, the volume of the soil 
flattened sphere CDAB, and the volume of air of the 
torus of AFE area (6). Monnet et al. (2017) present 
the   calculation of the menisci volume. 
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The meniscus volume is simulated by a 
Solidworks® model which allows measuring the 
numerical volume of the meniscus, and comparing 
with the analytical value of the meniscus. The  
comparison shows that the analytical relations allow 
finding the meniscus volume of the Solidworks® 
model. 

 
Figure 1. Theoretical meniscus model between two 
spheres (S.Taïbi, 1994) 

 
Figure 2. Geometrical model for the meniscus calculation of 2 
spherical particles with a wetting angle c (Monnet et al., 2017) 

2.4 Arrangement of soil particles 

The different arrangements of uniform soil particles 
give a variation of void ratio between 1.315 to 0.343 
(Taibi, 1994). The SoildWorks® program was used 
for the precise modeling of the four possible     
arrangements, tetrahedral, cubic, octahedral,     
dodecahedral (Fig.3 to 6). It shows that the void ratio 
is  independent of the radius of the particles, but    
depends only on the arrangement between particles. 
The   radius of particles has only an influence on 
the size of the REV (Representative Elementary 
Volume). The  variables which describes the    
different phenomenons along the drying path are the 
ratio between the air bubble and the particles radius. 
The Solidworks model allows determining into the 
REV: 
- The number, the angle of contact for each particle 
- The number of total menisci per arrangement 
For the drying path, the model finds: 



- The radius of the bubble appearing at nucleation  
- The number of bubbles able to appear inside VER 
- The degree of saturation at nucleation  
- The suction at nucleation  
- Radius and suction of the percolating bubble  
For the wetting path, the model finds:  
- The radius of the bubble which percolates 
- The suction at percolation  
The theoretical calculation of the meniscus can be 
performed when the menisci are independent. When 
the meniscuses merge, it is assumed that the suction 
remains unchanged. 

  
Figure 3. Tetrahedral ar-
rangement, e = 1.315 ; 4 con-
tacts per particle ; 8 menisci 

Figure 4. Cubic arrangement ; 
e = 0.910 ; 6 contacts per par-
ticle ; 3 menisci 

  
Figure 5. Octahedral ar-
rangement ; e = 0.470 ; 8 
contacts per particle ; 8 me-
nisci  

Figure 6. Dodecahedral ar-
rangement ; e = 0.343 ; 12 
contacts per grain ; 17.6 me-
nisci  

2.5 Theoretical retention curve for a uniform soil: 
Domain D1 
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For a uniform soil, with only one diameter of soil 
particles, there are different possible arrangements 
(tetrahedral, cubic, octahedral, dodecahedral) where 
the relative position of the particles is known as well 
as the REV, the void ratio, the number and orienta-
tion of the contacts in the arrangement are known.  

On a reverse way, the knowledge of the void ratio 
allows the type of arrangement of the soil particles to 
be known. The knowledge of the water content or 
the saturation allows the calculation of the total vol-
ume of water in the REV (7). The knowledge of the 
number of contacts in the REV and the number of 
complete menisci allows the calculation of the vol-
ume (8) of a single meniscus (Monnet et al., 2017). 
The volume of the meniscus depends on the radius 

of the meniscus, the radius of the grain and the  
suction. This allows the calculation of the suction    
associated with a void ratio and water content. 

2.6 Compactness and homogeneity of granular 
mixture for a graded soil 

The theoretical model is organized from the larger to 
the smaller of n different Di diameters for the soil 
skeleton particles, such as (9). The symbol C is the 
compactness which is equal to the solid volume of 
the soil sample (10). The relative compactness to the 
total sample of the class i is noted Ci  (11). As a 
consequence, the total compactness C of the soil 
sample is given by (12). In the theory, Ri       
corresponds to the volume refusal on the sieve of     
diameter Di , based on the total volume of the   
sample grains (13). Assuming a single density for all    
aggregates, this term is the refusal by sieve reduced 
to the total mass of the sample. 
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Figure 7. The perturbations exerted on the middle class grains 
by the large grains and the small grains (De Larrard, 1999). 

2.7 Mixture scattered - general case for a graded 
soil 

The mixture of 3 parts is subjected to a 
decompacting effect by small grains (grains 3 Fig.7) 
on the larger ones (grain 2 Fig.7) and a wall effect of 
the coarse grains (grain 1 Fig.7) on the smaller ones 
(grain 2 Fig.7). 

This can be generalized for n different classes by 
finding the virtual C compactness of the mixture, 
considering that the class i is dominant in equation 
(14-15). The relative density corresponds to i which 
is the ratio between the density of the homogeneous 
mixture of rank i and the density of the solid part of 
the soil. The experimental i coefficient is found 
(16) by interpolation of the experimental curve 
(Fig.8) which is the evolution of density of the  



homogeneous sample of a different diameter     
compacted with a standard energy. 
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Figure 8.i compactness coefficient of rolled grains (De 

Larrard, 1999) 

 
 

2.8 Compactness of each size class : graded soil 

In a mixture of n different diameter organized    
according to equation (9) from the largest to the  
smallest, the theory of De Larrard (1999) allows the 
diameter Di dominant, with its compactness to be 
found, which allows calculation of the porosity of 
class i of grains by equation (11) and the       
corresponding void ratio ei.  

In the first step of the calculation, the total    
compactness Cm of the mixture and the porosity nm 
are known. On the total size curve (Fig.9). The dom-
inant diameter separates the curve into two portions: 

- At the right of the dominant diameter, large ele-
ments floating into small elements 

- At the left of the dominant diameter, small parti-
cles fall into the gaps left by the dominant grains 

Each portion has a density of its own and depends 
only on the prevailing diameter. Then we can   
consider two separate samples for which two new 
dominant diameters appear with their own character-
istics of compactness, porosity and void ratio. We 
can  determine from part to part all theoretical   
porosity of all diameters of the particle curve size. 

Let us consider the total mixture of n different  
particles. For a single rank of aggregate i, the   
volume of the void Vvi in the mixture is given by the 
equation (17). Under these conditions, the void ratio 
eTheo of the theoretical mixture is known (18). This 
void ratio is different from the measured void ratio 
eTest since the former refers to a standardized method 
of   compaction. We assume the proportionality 
between the void ratio of the different classes.    

According to  equation (19) eTest is the known value 
of mixture   measured during the test; eTheo is the 
void ratio of the  mixture compacted at the standard  
energy, and emi is the void ratio of each diameter in 
the compacted sample. This void ratio emi allows 
knowing the   arrangement of the particle class. 
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Figure 9. The grade curve of Livet-Gavet loam separated into 
two portions, large elements on the right and left small particles 

 

2.9 Grain diameter at the air inlet on wetting path 

We assume that small pores are saturated (Sri = 
1), and that large pores are dry (Sri = 0). Under these 
conditions, the water content can be decomposed as 
a function of particle size (20), with dry pores (Sr = 
0) for j <i (large diameter) and saturated pores (Sr = 
1) for j> = i (small diameters). The rank of the pores 
involved in the air inlet is i. In the relation (20), the 
only unknown is the rank i. The knowledge of emi , 
Ri and the water content wNS allows the rank i of the 
air inlet and the suction of class i, to be found. 

2.10 Suction at the air entry on drying path 

The model assumes that the air begins to percolate 
through the soil when the bubble can pass through 
the smallest porosity of the class of particles. For 
lower water content the relation between degree of 
saturation and suction follows the logarithm expres-
sion (1) where  is an inner parameter of the model. 



2.11 Specific surface of the soil 

The specific surface of the soil Ss can be measured 
with the Methyl Blue Test and the method proposed 
by Santamarina et al. (2002), with the relation (21) 
where the Methyl Blue Index is VBS, its molecular 
weight 319.87g/mol., the Avogadro number is Av 
and the surface area covered by one methyl blue 
molecule is AMB (equal to 1.3.10

-18
m²/mol.). The 

theoretical model of spherical particle allows     
determination of the theoretical surface of soil Spart 
by unit mass d which must be divided by a to take  
into account the real shape of soil particles through 
relation (22); a is an internal parameter of the model 
and allows determination of the specific surface of 
the arrangement with the density of each class (23). 

2.12 Suction linked to the adsorbed water 

The specific surface of the soil which fixes adsorbed 
water is known with relation (23). Thickness ha of 
adsorbed water is measured by Or and Tuller (1999) 
as a unique function of the mineralogy, water vapor 
pressure and temperature . On a reverse       
consideration, knowledge of temperature  and  
mineralogy   allows determination of ha and the 
water content linked to the adsorption (24).  

Following Frydman and Baker (2009) we assume 
that the Van Der Waal forces give a suction s equal 
to the suction of the adsorbed water (25) where Ss is 
the specific surface of the saturated and unsaturated 
part of the soil.  

wasads hSw ..  (24) 
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Table 1. The physical parameters of calculation (w) for Wetting 

path (d) for Drying path on Glass and loam 

Sample Glass Livet-Gavet Jossigny 

s (kN/m3) 29 26 27.2 
Ep (GPa) 65 107 107 
p 0.25 0.2 0.2 
eTest 0.667 0.738 0.455 
wr - 0.27 0.18 
c (degree) 20d-25w 0d-5w 0d-5w 
Rp (m) 4 to 140 1.6 to 3mm 0.1 to 0.2mm 
Tc (10-5kN/m3) 7.28 7.28 7.28 
MB (cm3/100g) 0 0.18 4 
 (degree) 20 20 20 

3 RESULTS 

Simulations of the experiments are made along  
drying and wetting paths for the relation between the 
suction and the degree of saturation, with different 
void ratio and different grading curves. The      
parameters are shown (Table 1).   

3.1 Graded sample of glass 

The simulation (Fig.10) of the experiment on a  
graded glass sample (Indarto, 1991) is made with a 
sample graded between 4-140m and a unit weight 
of 18,7kN/m

3
. It appears that the new model allows a 

correct estimation of the experiment curve on the 
drying path (cor.0.96) and on the wetting path 
(cor.0.89) to be found. The difference between the 
new theory and the experiment at 50% of saturation 
lies between 30kPa on the drying path to 6kPa on the 
wetting path 

 
Figure 10. Comparison of theoretical retention curve with the 
experimental results Indarto (1991); void ratio 0.55; 4m-
140m diam. glass; wetting angle, 20° at drying 25° at wetting 

 
Figure 11. Comparison of the theoretical curve of retention and 

the experimental results; void ratio 0.71; Livet Gavet Loam; 

wetting angle, 0° at drying, 5° at wetting 

3.2 Livet-Gavet loam 

The simulation of the Livet-Gavet silt in the form of 
paste is shown (Fig.11). Particle sizes are between 
1.6m-2mm and density is 15,2kN/m3. The Methyl 
Blue Index of 0.18 corresponds to a specific surface 
of 4.4m²/g. The new model allows the experiment 
curve with a correct correlation on the wetting path 



and on the drying path (cor.0.95) to be found. The 
difference between the new theory and the experi-
ment at 50% of saturation lies between 50kPa on the 
wetting path to 0kPa on the drying path. 

3.3 Jossigny loam 

The simulation (Fig.12) of the experiment on the 
Jossigny loam (Fleureau and Indarto, 1993) is made 
with a sample graded between 0.1m-0.2mm of  
density 18kN/m3. This loam is close to a clay with a 
Methyl Blue Index of 4 which corresponds to a  
specific surface of 98m²/g. It appears that the new  
model finds no difference between wetting and  
drying paths when adsorption prevails with a degree 
of saturation lower 0.50. For a higher value of satu-
ration, the wetting and drying paths are different. 
The theory allows a correct estimation of the exper-
iment curve on the wetting path (cor.0.96) and on the   
drying path (cor.0.99) to be found.  The difference  
between the new theory and the experiment at 50% 
of saturation lies between  380kPa on the wetting 
path and cannot be measured on the drying path. 

 
Figure 12. Comparison of the theoretical curve of retention and 

the experimental results; void ratio 0.48; Jossigny Loam; wet-

ting angle, 0° at drying, 5° at wetting 
 

4 CONCLUSION 

A new theory is presented for the retention curve of 
the soil along drying and wetting path. It explains the 
difference between these two paths by the saturation 
of the soil particles with water menisci, which are 
independent at low saturation, then coalescent at 
high saturation on the saturation path and by the   
apparition of air nucleation followed by percolation 
on the drying path. It shows the difference between 
the adsorption behavior and the capillarity behavior. 

This new model uses only 10 physical parameters 
(unit mass of solid particle, Young modulus and 
Poisson ratio of particles, void ratio at the shrinkage 
limit, water content at shrinkage, particle radius and 

grading curve, wetting angle, surface tension of wa-
ter, Methyl Blue Index, temperature) and needs no 
additional experimental parameters always difficult 
to determine. It allows the retention curve to be es-
tablished along the drying and wetting paths. The 
theoretical retentions curves of the uniform and 
wide-grained soil clearly show the difference     
between the drainage and wetting paths, and are very 
close to the measurements. On the drying path, the 
model assumes that air will percolate through the 
soil when bubbles can cross the smallest porosity 
corresponding to the dominant diameter. The authors 
would like to thank the financial support provided by 
the French national project Terre Durable. 
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